На аппарате ивл выставлено 30 что значит. Подключение к аппарату искусственной вентиляции легких - показания и проведение. Режимы механической ивл

При нарушении у больного дыхания проводится ИВЛ, или искусственная вентиляция легких (искусственное дыхание). Она применяется, когда больной не в состоянии дышать самостоятельно или когда он лежит под анестезией, вызывающей нехватку кислорода.

Есть несколько разновидностей ИВЛ – от обычной ручной вентиляция легких до аппаратной. С ручной может справиться почти любой человек, аппаратная требует понимания того, как устроено медицинское оборудование.

Это важная процедура, поэтому необходимо знать, как проводить ИВЛ, какова последовательность действий, сколько живут пациенты, подключенные к ИВЛ, а также в каких случаях процедура противопоказана, а в каких проводится.

Что такое ИВЛ

В медицине ИВЛ – это искусственное вдувание в легкие воздуха для обеспечения газообмена между альвеолами и окружающей средой.

Искусственная вентиляция применяется в том числе как мера реанимации, если у пациента серьезные нарушения дыхания, либо как средство защиты организма от недостатка кислорода.

Состояние нехватки кислорода появляется при болезнях спонтанного характера или при анестезии.Искусственная вентиляция имеет прямую и аппаратную форму.

Первая подразумевает сжимания/разжимания легких, обеспечивающие пассивные вдохи и выдохи без помощи аппарата. Аппаратная использует специальную газовую смесь, которая попадает в легкие через аппарат искусственной вентиляции (это своеобразные искусственные легкие).

Когда делают искусственную вентиляцию

Существуют следующие показания для искусственной вентиляции:


После операции

В легкие больного вставляют интубационную трубку устройства ИВЛ в операционной либо после доставки пациента в палату наблюдения после наркоза или отделение интенсивной терапии.

Целями ИВЛ после оперативного вмешательства считаются:

  • Исключение откашливания секрета и мокроты из легких, снижающее частоту возникновений инфекционных осложнений;
  • Создание условий, благоприятных для питания с помощью трубки, с целью нормализации перистальтики и снижения частоты возникновений расстройств ЖКТ;
  • Снижение негативного воздействия на скелетную мускулатуру, возникающего после продолжительного действия анестетиков;
  • Снижение риска глубокого нижнего венозного тромбоза, уменьшение необходимости поддержки сердечно-сосудистой системы;
  • Ускоренная нормализация психических функций, а также нормализация состояния бодрствований и сна.

При пневмонии

При возникновении у больного тяжелой пневмонии может скоро развиться острая дыхательная недостаточность.

При данном заболевании показаниями к искусственной вентиляции считаются:

  • Нарушения психики и сознания;
  • Критический уровень артериального давления;
  • Прерывистое дыхание чаще 40 раз/мин.

Искусственная вентиляция проводится на раннем этапе развития заболевания для повышения эффективности работы и снижения риска смертельного исхода. Длится ИВЛ 10-15 суток, а через 3-5 часов после помещения трубки выполняют трахеостомию.

При инсульте

В лечении инсульта подключение ИВЛ является реабилитационной мерой.

Применять искусственную вентиляцию необходимо в случаях:

  • Поражения легких;
  • Внутреннего кровотечения;
  • Патологии дыхательной функции организма;
  • Комы.

При геморрагическом или ишемическом приступе у пациента затрудненное дыхание, восстанавливаемое аппаратом ИВЛ для обеспечения клеток кислородом и нормализации функций мозга.

При инсульте искусственные легкие ставят на срок менее двух недель. Этот период характеризуется снижением отечности мозга и прекращением острого периода болезни.

Виды аппаратов для искусственной вентиляции

В реанимационной практике используются следующие устройства искусственного дыхания, которые осуществляют доставку кислорода и удаление из легких углекислого газа:

  1. Респиратор . Устройство, которое используется для длительной реанимации. Большинство из таких аппаратов работают на электричестве и могут регулироваться по объему.

По способу устройства можно разделить на респираторы:

  • Внутреннего действия с эндотрахеальной трубкой;
  • Наружного действия с лицевой маской;
  • Электростимуляторы.
  1. Высокочастотная аппаратура . Облегчает привыкание пациента к аппарату, существенно снижает внутригрудное давление и дыхательный объем, облегчает кровоток.

Режимы ИВЛ в реанимации

Устройство искусственного дыхания используется в реанимации, оно относится к числу механических методов искусственной вентиляции. Он включает респиратор, интубационную трубку либо трахеостомическую канюлю.

У новорожденных и детей более старшего возраста могут возникать такие же проблемы с дыханием, как и у взрослых. В таких случаях используют разные аппараты, которые отличаются размером вводимой трубки и частотой дыхания.

Аппаратная искусственная вентиляция проводится в режиме свыше 60 циклов/мин. с целью снижения дыхательного объема, давления в легких, облегчения кровообращения и адаптации пациента к респиратору.

Основные способы ИВЛ

Высокочастотная вентиляция может проводиться 3 способами:

  • Объемная . Частота дыхания составляет от 80 до 100 в мин.
  • Осцилляционная . Частота 600 – 3600 в мин. с вибрацией прерывистого или непрерывного потока.
  • Струйная . От 100 до 300 в мин. Самая популярная вентиляция, при ней с помощью тонкого катетера или иглы в дыхательные пути под давлением вдувается смесь газов или кислород. Другие варианты – трахеостома, интубационная трубка, катетер через кожу или нос.

Кроме рассмотренных методик, выделяют режимы реанимации по типу аппарата:

  1. Вспомогательный – дыхание пациента сохраняется, подача газа происходит при попытке человека сделать вдох.
  2. Автоматический – дыхание полностью подавляется фармакологическими препаратами. Пациент дышит полностью с помощью компрессии.
  3. Периодический принудительный – применяется при переходе к полностью самостоятельному дыханию от ИВЛ. Постепенное снижение частоты вдохов искусственных заставляет человека дышать самому.
  4. Электростимуляция диафрагмы – электростимуляция проводится с помощью наружных электродов, заставляющих диафрагму ритмично сокращаться и раздражающих нервы, расположенные на ней.
  5. С ПДКВ – внутрилегочное давление при этом режиме остается положительным относительно атмосферного, что дает возможность лучше распределять в легких воздух, устранять отеки.

Аппарат искусственной вентиляции

В постоперационной палате или режиме реанимации используется устройство искусственной вентиляции. Это оборудование необходимо для подачи в легкие смеси из сухого воздуха и кислорода. Используется принудительный способ для насыщения крови и клеток кислородом и выведения углекислого газа из организма.

Существует несколько видов аппаратов ИВЛ:

  • В зависимости от вида оборудования – трахеостома, интубационная трубка, маска;
  • В зависимости от возраста – для новорожденных, детей и взрослых;
  • В зависимости от алгоритма работы – механический, ручной, а также с нейроконтролируемой вентиляцией;
  • В зависимости от назначения – общего или специального;
  • В зависимости от привода – ручной, пневмомеханический, электронный;
  • В зависимости от сферы применения – отделение реанимации, интенсивной терапии, послеоперационное отделение, новорожденных, анестезиологии.

Порядок проведения ИВЛ

Для выполнения ИВЛ врачи используют специальные медицинские аппараты. После осмотра пациента врач устанавливает глубину и частоту вдохов, подбирает состав газовой смеси. Смесь для дыхания подается с помощью шланга, который связан с трубкой. Аппарат контролирует и регулирует состав смеси.

При использовании маски, закрывающей рот и нос, аппарат снабжается системой сигнализации, сообщающей о нарушении дыхания. При продолжительной вентиляции производится введения воздуховода через стенку трахеи.

Возможные проблемы

После установки устройства ИВЛ и во время его работы могут возникнуть следующие проблемы:

  1. Десинхронизация с респиратором . Может привести к неадекватной вентиляции, падению объема дыхания. Причинами считаются задержка дыхания, кашель, патологии легких, неверно установленный аппарат, бронхоспазмы.
  2. Наличие борьбы человека с аппаратом . Для исправления необходимо устранить гипоксию, а также проверить параметры устройства, саму аппаратуру и положение эндотрахеальной трубки.
  3. Повышенное давление в дыхательных путях . Появляется вследствие бронхоспазмов, нарушений целостности трубки, гипоксии, отека легких.

Негативные последствия

Применение аппарата ИВЛ либо другого способа искусственной вентиляции может стать причиной следующих осложнений:


Отлучение пациента от ИВЛ

Показанием для выполнения отлучения пациента является положительная динамика показателей:

  • Сокращение минутной вентиляции до 10 мл/кг;
  • Восстановление дыхания до уровня 35 в мин.;
  • У больного нет инфекции или повышенной температуры, апноэ;
  • Стабильные показатели крови.

Перед отлучением необходимо выполнить проверку остатков мышечной блокады, а также до минимума сокращают дозу седативных препаратов.

Видео

Режимы ИВЛ определяются по способу пере­ключения с выдоха на вдох, а также по возможности сочетания респираторной поддержки с самостоя­тельным дыханием (таблица 50-3 и рис. 50-1). Большинство современных аппаратов ИВЛ позво­ляют проводить ИВЛ в нескольких режимах, а в ап­паратах с микропроцессорным управлением эти ре­жимы можно комбинировать.

А. Принудительная ИВЛ (Controlled Mechani­cal Ventilation): B этом режиме аппарат переклю­чается с выдоха на вдох по истечении заданного промежутка времени. Этот промежуток времени определяет частоту аппаратных вдохов. Дыхатель­ный объем, частота аппаратных вдохов и минутный объем дыхания постоянны вне зависимости от по­пыток самостоятельного вдоха. Самостоятельное дыхание не предусмотрено. Установка ограниче­ния инспираторного давления предотвращает ба-ротравму легких. Принудительную ИВЛ целесооб­разно проводить в отсутствие попыток самостоя­тельного дыхания. Если больной бодрствует и пытается дышать, то необходимо ввести седатив-ные препараты и миорелаксанты.

Б. Вспомогательно-принудительная ИВЛ (Assist-Control Ventilation): Установка датчика давления в дыхательный контур позволяет использо­вать попытку самостоятельного вдоха для запуска ап­паратного вдоха. Регулируя чувствительность датчи­ка, можно подобрать необходимую для запуска глу­бину самостоятельного вдоха (чаще устанавливают величину разрежения в дыхательном контуре). Аппа­рат настраивают на минимальную фиксированную

ТАБЛИЦА 50-3. Режимы ИВЛ

Режим ИВЛ Переключение со вдоха на выдох Переключение с выдоха на вдох Возмож­ность са­мостоя­тельного дыхания Возможность использова­ния для пере­вода с ИВЛ на самостоятель­ное дыхание
По объему По вре­мени По дав­лению По потоку По вре­мени По дав­лению
Принудительная ИВЛ + +
Вспомогательно-при­нудительная ИВЛ + + +
Перемежающаяся принудительная ИВЛ + + + +
Синхронизированная перемежающаяся принудительная ИВЛ + + + + +
ИВЛ с поддерживаю­щим давлением + + + +
ИВЛ с управлением по давлению + +
ИВЛ с гарантирован­ным минутным объе­мом дыхания +
ИВЛ с управлением по давлению и обрат­ным соотношением вдох/выдох + +
ИВЛ с периодическим снижением давления в дыхательных путях + + +
ВЧ инжекционная ИВЛ + + +

частоту дыхания, но каждая попытка самостоятельно­го вдоха (создаваемое больным разрежение должно быть не меньше заданного) запускает аппаратный вдох. В отсутствие попыток самостоятельного вдоха аппарат работает в принудительном режиме.

В. Перемежающаяся принудительная ИВЛ (Intermittent Mandatory Ventilation): Этот режим предусматривает возможность самостоятельного дыхания. Основным физиологическим преимущест­вом является снижение среднего давления в дыха­тельных путях (табл. 50-4). Вдобавок к возможно­сти самостоятельно дышать через аппарат ИВЛ уста­навливается определенное количество аппаратных вдохов (т.е. задается минимально гарантированный дыхательный объем). Если заданная частота аппарат­ных вдохов высока (10-12/мин), то аппарат ИВЛ обеспечивает практически весь минутный объем дыхания. Напротив, если заданная частота аппарат­ных вдохов невысока (1-2/мин), то аппарат ИВЛ осуществляется лишь минимум респираторной поддержки, и большая часть минутного объема ды­хания обеспечивается самостоятельным дыханием больного. Частоту аппаратных вдохов подбирают таким образом, чтобы обеспечить нормальное РаСO 2 . Этот режим получил широкое распростра­нение при переводе больного с ИВЛ на самостоя­тельное дыхание. При синхронизированной переме­жающейся принудительной ИВЛ аппаратный вдох по возможности совпадает с началом самостоятель­ного вдоха. Правильная синхронизация предупреж­дает наложение аппаратного вдоха на середину са­мостоятельного, которое приводит к значительному увеличению дыхательного объема. Ограничение ин-

Рис. 50-1. Кривые давления в дыхательных путях при разных режимах ИВЛ


ТАБЛИЦА 50-4. Преимущества синхронизирован­ной перемежающейся принудительной ИВЛ

спираторного давления защищает легкие от баротравмы.

Контур аппарата, осуществляющего переме­жающуюся принудительную ИВЛ, обеспечивает непрерывную подачу дыхательной смеси, что необ­ходимо для самостоятельного дыхания в проме­жутках между аппаратными вдохами. Современ­ные аппараты позволяют проводить синхронизиро­ванную перемежающуюся принудительную ИВЛ, в то время как старые модели для этого нужно обору­довать параллельным контуром, системой постоян­ного потока дыхательной смеси, или же работающим "по требованию" клапаном вдоха. Независимо от сис­темы, правильное функционирование направляю­щих клапанов и достаточная объемная скорость пото­ка дыхательной смеси являются условиями, необхо­димыми для предотвращения повышенной работы дыхания, особенно при применении положительного давления в конце выдоха (ПДКВ).

Г. ИВЛ с гарантированным минутным объе­мом дыхания (Mandatory Minute Ventilation): Больной дышит самостоятельно и получает аппа­ратные вдохи тоже; непрерывно проводится мони­торинг выдыхаемого минутного объема дыхания. Аппарат работает таким образом, что спонтанные и аппаратные вдохи в сумме составляют заданный минутный объем дыхания. Эффективность этого режима для перевода с ИВЛ на самостоятельное дыхание еще предстоит выяснить.

Д. ИВЛ с поддерживающим давлением; сино­ним: поддержка давлением (Pressure Support Ventilation): ИВЛ с поддерживающим давлением применяется при сохраненном самостоятельном дыхании, она предназначена для увеличения дыха­тельного объема, а также преодоления повышенного сопротивления, обусловленного эндотрахеальной трубкой, дыхательным контуром (шланги, коннек­торы, увлажнитель) и аппаратом (пневматический контур, клапаны). При каждой попытке самостоятельного вдоха аппарат вдувает в дыхательные пути поток дыхательной смеси, объемная скорость кото­рого достаточна для достижения заданного давления на вдохе. Когда инспираторный поток снижается до определенного уровня, аппарат ИВЛ по механизму отрицательной обратной связи переключается со вдоха на выдох, и давление в дыхательных путях снижается до исходного. Единственным задавае­мым параметром является давление на вдохе. Час­тота дыхания определяется больным, тогда как ды­хательный объем может значительно колебаться в зависимости от инспираторного потока, механиче­ских свойств легких и силы самостоятельного вдоха (т.е. создаваемого разрежения). Низкий уровень за­даваемого давления на вдохе (5-15 см вод. ст.) обыч­но достаточен для преодоления любого сопротивле­ния, обусловленного дыхательной аппаратурой. Бо­лее высокий уровень задаваемого давления на вдохе (20-40 см вод. ст.) представляет собой полноценный режим ИВЛ, требующий ненарушенной централь­ной регуляции дыхания и стабильности механиче­ских свойств легких. Основным преимуществом ИВЛ с поддерживающим давлением является свой­ство увеличивать спонтанный дыхательный объем и снижать работу дыхания для больного. Этот ре­жим используют при переводе с ИВЛ на самостоя­тельное дыхание.

E. ИВЛ с управлением по давлению (Pressure Control Ventilation): B этом режиме, как и при ИВЛ с переключением по объему, инспираторный поток снижается по мере повышения давления в дыхательных путях и прекращается по достиже­нии заданного максимума. Основной недостаток ИВЛ с управлением по давлению: дыхательный объем непостоянен, он зависит от растяжимости грудной клетки и легких, заданной частоты дыха­ния и исходного давления в дыхательных путях. Более того, при повышенном сопротивлении в ды­хательных путях инспираторный поток прекраща­ется еще до того, как давление в альвеолах повысит­ся до давления в дыхательных путях.

Ж. ИВЛ с обратным соотношением вдох/вы­дох (Inverse I:E Ratio Ventilation): B этом режиме ИВЛ соотношение продолжительности вдох/выдох превышает 1:1, чаще всего составляя 2:1. Это достига­ется различными способами: установка паузы в конце вдоха; снижение максимального инспираторного по­тока при ИВЛ с переключением по объему; наиболее распространенный способ - ограничение инспира­торного давления в сочетании с такой настройкой частоты аппаратных вдохов и продолжительности вдоха, чтобы продолжительность вдоха превышала продолжительность выдоха (ИВЛ с управлением по давлению и обратным соотношением вдох/выдох).

При ИВЛ с обратным соотношением вдох/выдох возникает спонтанное ПДКВ, поскольку каждый новый вдох начинается до полного завершения предшествующего выдоха; задерживаемый в лег­ких воздух увеличивает ФОЕ, до тех пор пока не на­ступает новое равновесное состояние. Этот режим не позволяет больному дышать самостоятельно и требует введения высоких доз седативных препа­ратов и миорелаксантов. Эффективность ИВЛ с об­ратным соотношением вдох/выдох в улучшении оксигенации у больных со сниженной ФОЕ такая же, как у ПДКВ. Как и при ПДКВ, оксигенация обычно прямо пропорциональна среднему давле­нию в дыхательных путях. Основным преимущест­вом ИВЛ с обратным соотношением вдох/выдох является более низкое пиковое давление на вдохе. Сторонники ИВЛ с обратным соотношением вдох/выдох считают, что по сравнению с ПДКВ она эффективнее вовлекает альвеолы в газообмен и обеспечивает более равномерное распределение дыхательной смеси в легких.

3. ИВЛ с периодическим снижением давления в дыхательных путях (Airway Pressure Release Ventilation): Этот режим облегчает самостоятель­ное дыхание под постоянным положительным дав­лением в дыхательных путях. Периодическое сни­жение давления в дыхательных путях облегчает вы­дох, что стимулирует самостоятельное дыхание. Таким образом, давление в дыхательных путях сни­жается при самостоятельном вдохе и аппаратном выдохе. Параметры, определяющие минутный объ­ем дыхания: продолжительность вдоха, выдоха, а также периода снижения давления в дыхательных путях; глубина и частота самостоятельных вдохов. Начальные установки: положительное давление в дыхательных путях 10-12 см вод. ст.; продолжи­тельность вдоха 3-5 с; продолжительность выдоха 1,5-2 с. Продолжительность вдоха определяет час­тоту аппаратных вдохов. Основное преимущество ИВЛ с периодическим снижением давления в дыха­тельных путях: значительное снижение риска де­прессии кровообращения и баротравмы легких. Этот режим является хорошей альтернативой ИВЛ с управлением по давлению и обратным соотноше­нием вдох/выдох в решении проблем, обусловлен­ных высоким пиковым давлением вдоха у больных со сниженной растяжимостью легких.

И. Высокочастотная ИВЛ (ВЧ ИВЛ) (High-FrequencyVentilation): Выделяют три вида ВЧ ИВЛ. При ВЧ ИВЛ с положительным давлением ап­парат подает в дыхательные пути небольшой дыха­тельный объем с частотой 60-120/мин. ВЧ инжек-ционная ИВЛ (ВЧИ ИВЛ) проводится с помощью небольшой канюли, через которую с частотой 80-300/мин подается дыхательная смесь; поток воз­духа, подсасываемый газовой струей (эффект Бер-нулли), может увеличивать дыхательный объем. При ВЧ осцилляционной ИВЛ специальный пор­шень создает в дыхательных путях колебательные движения газовой смеси с частотой 600-3000/мин. Дыхательный объем при ВЧ ИВЛ ниже анатомиче­ского мертвого пространства, и механизм газообме­на при этом точно неизвестен; считают, что он может происходить в результате усиленной диффузии. ВЧИ ИВЛ чаще всего применяют в операционной при вмешательствах на гортани, трахее и бронхах; кроме того, она может спасти жизнь в экстренных ситуациях при невозможности интубации трахеи и проведения стандартной ИВЛ (глава 5). При то-ракотомии и литотрпсии ВЧИ ИВЛ не имеет пре­имуществ перед стандартными режимами ИВЛ. В отделении интенсивной терапии ВЧИ ИВЛ пока­зана при бронхоплевральных и трахеопищеводных свищах, если другие режимы ИВЛ неэффективны. Невозможность подогревания и увлажнения дыха­тельной смеси при ВЧ ИВЛ сопряжена с риском оп­ределенных осложнений. Начальные установки при ВЧИ ИВЛ: частота аппаратных вдохов: 100-200/мин, фаза вдоха 33%, рабочее давление 1-2 атм. Во избежание ошибок среднее давление в дыхательных путях следует измерять в трахее в точке, расположенной не менее чем в 5 см дисталь­нее инжектора. Элиминация CO 2 прямо пропорцио­нальна рабочему давлению, тогда как оксигенация - среднему давлению в дыхательных путях. При ВЧИ ИВЛ с высоким рабочим давлением и фазой вдоха >40% может возникнуть спонтанное ПДКВ.

К. Раздельная ИВЛ (Differential Lung Ventila­tion): Этот режим применяют при тяжелом пораже­нии одного легкого, резистентном к ПДКВ. В этом случае стандартные режимы ИВЛ с ПДКВ могут утяжелить нарушения вентиляционно/перфузи-онных отношений. Неравномерная вентиляция и перерастяжение здорового легкого усугубляют гипоксемию и баротравму. После установки двух-просветной эндобронхиальной трубки проводят раздельную ИВЛ каждого легкого с помощью одно­го или двух аппаратов ИВЛ. При использовании двух аппаратов осуществляют временную синхро­низацию аппаратных вдохов.

Министерство образования Российской Федерации

Пензенский Государственный Университет

Медицинский Институт

Кафедра Реанимации и интенсивной терапии

Зав. кафедрой д.м.н., _____________

Режимы вентиляции ИВЛ

Выполнила: студентка V курса ________

Проверил: к.м.н., доцент______________

Пенза

План

1. Классификация режимов вентиляции

2. Вентиляция по контролю

3. Механическая вентиляция

4. Принудительная вентиляция

5. Высокочастотная вентиляция

Литература


1. Классификация режимов вентиляции

В отечественной литературе принято делить режимы ИВЛ на две большие группы: а) контролируемую и б) вспомогательную вентиляцию легких.

Контролируемая ИВЛ – это полная замена функции легких (обеспечение доставки газовой смеси в дыхательные пути) аппаратным дыханием (CMV, AssistCMV).

Вспомогательная ИВЛ (ВВЛ) – это дополнительная аппаратная вентиляция легких при сохранении спонтанного дыхания.

Таким образом, при контролируемой ИВЛ больной самостоятельно не дышит, причем если все-таки триггерный механизм используется, то на каждую попытку больного аппарат подает вдох с заданными параметрами (принудительный вдох). При вспомогательной ИВЛ наряду с определенным количеством принудительных вдохов больной имеет возможность дышать самостоятельно, или же аппарат поддерживает самостоятельное дыхание иным образом (PSV).

В соответствие с другими классификациями, под термином вспомогательная понимают вентиляцию, когда кривая давления на вдохе поднимается выше базовой линии (создается положительное давление в дыхательных путях), т.е. респиратор работает на больного и выполняет хотя бы часть работы дыхания.

Термины спонтанный или принудительный вдох часто используются для описания способа обеспечения вдоха при проведении вспомогательной вентиляции. При спонтанном дыхании вдох инициируется и заканчивается пациентом. Иногда изменения потока или давления обусловлены характеристиками легких больного. Например, при вентиляции легких с поддержкой давлением (PSV) переключение на выдох осуществляется тогда, когда инспираторный поток снижается до определенного значения в момент, когда пациент собирается закончить инспираторную фазу. Вентилятор фиксирует это и в соответствии со своей программой прекращает доставку газа больному. Реально получается, что именно больной прекращает вдох. Таким образом, вдох с поддержкой давлением считается спонтанным.

Принудительные вдохи либо инициируются, либо заканчиваются вентилятором. Например, если аппарат прекращает инспираторный поток при доставке определенного объема (вентиляция, контролируемая по объему) или вдох начинается по истечении определенного промежутка времени, этот вдох рассматривается как принудительный.

Каждый режим вентиляции можно дифференцировать по контролируемому параметру и принципу переключения фаз дыхательного цикла. Например, режим IMV плюс PS следует описать следующим образом:

Принудительный вдох инициируется по времени, объем/поток управляемый, ограниченный по потоку, а переключение с вдоха на выдох осуществляется по времени;

Спонтанный вдох является контролируемым по давлению, инициируемым по давлению, с переключение с вдоха на выдох по потоку.

Данный принцип позволяет охарактеризовать практически все на сегодняшний день используемые режимы вентиляции.

2. Вентиляция по контролю

Вентиляция легких с контролем по давлению (РC) требует, чтобы оператор установил максимальное инспираторное давление. Основная цель респиратора в этом случае - достигнуть и удерживать заданное давление в течение определенного времени. Начальный поток газа при этом довольно большой, поскольку респиратор пытается достигнуть заданного давления. Как только цель (заданное давление) достигается, поток газа снижается (убывающий поток). Это происходит до тех пор, пока не закончится инспираторная фаза.

Инспираторный поток, генерируемый вентилятором, зависит от нескольких факторов. Один из них – выбранный уровень давления. Чем он выше, тем выше градиент давления в дыхательном контуре и, соответственно, скорость потока. Другие факторы включают в себя используемый алгоритм генерирования потока и управления давлением, так же как и легочно-торакальный комплайнс и сопротивление дыхательных путей. Паттерн изменения инспираторного потока в графическом виде представляет собой экспоненциально убывающую кривую. Этот паттерн является результатом уменьшения градиента давления между верхними дыхательными путями и легкими, который возникает одновременно с наполнением легких и выравниванием давления между дыхательным контуром и легочными структурами. Дыхательный объем также зависит от нескольких факторов, главным образом от механических характеристик легких (растяжимость и сопротивление).

Потенциальными преимуществами вентиляции, контролируемой по давлению, по сравнению с обычными объемными методами являются:

Более быстрый поток на вдохе, который обеспечивает лучшую синхронизацию с аппаратом и снижение тем самым работы дыхания;

Раннее максимальное раздувание альвеол, обеспечивающее лучший газообмен;

Лучшее расправление ранее ателектазированных альвеол;

Возможность использования в условиях негерметичного контура;

Профилактика баротравмы при ИВЛ.

Вентиляция легких, контролируемая по давлению, иногда используется с обратным отношением времени вдоха и выдоха (PC-IRV). В некоторых ситуациях (ОПЛ) использование инвертируемого отношения вдоха к выдоху приводит к улучшению газообмена, по-видимому, за счет улучшения распределения вентиляции и расправления коллабированных альвеол на фоне более высокого среднего давления

При проведении вентиляции с контролем по объему (VС) требуется, чтобы оператор установил заданный дыхательный объем. Обычно также устанавливается частота дыхательных циклов, время вдоха и поток (включая форму потока). При использовании этого режима давление в дыхательных путях зависит в первую очередь от механических характеристик легких больного. Объем, подаваемый в легкие, обычно остается постоянным. Поэтому такую вентиляцию выгодно использовать, когда важно обеспечить стабильный V T и РСО 2 . Принципиальным недостатком объемной вентиляции является возможность развития высокого пикового альвеолярного давления и регионального перерастяжения легких.

Хотя имеется достаточно много сведений относительно возможных преимуществ режима с контролем по давлению (особенно при тяжелом паренхиматозном повреждении) перед вентиляцией, контролируемой по объему, доказательств о влиянии выбора режима на исход лечения на сегодняшний день нет. Большинство больных могут равноценно вентилироваться с использованием как одного, так и другого режима, если непрерывно мониторируется такой показатель, как пиковое альвеолярное давление (давление плато), V E , синхронизация дыхания больного и работы вентилятора, газовый состав крови и др.

При объемной вентиляции также можно использовать инвертированное соотношение вдоха к выдоху, причем удлинение инспираторной фазы можно обеспечивать за счет либо замедления потока, либо установки паузы вдоха. Среднее давление за дыхательный цикл при этом может существенно различаться. На среднее и пиковое давление в дыхательных путях оказывает влияние также и форма потока в инспираторную фазу (рампообразная, прямоугольная и др.).

Некоторые респираторы предлагают возможность проводить вентиляцию с периодической подачей (1 на 100 принудительных вдохов) увеличенного вдоха (sighvolume). Мнения об использовании такого маневра противоречивые. Периодическая подача большого дыхательного вдоха может приводить к расправлению ателектазов и в то же время к созданию нежелательного высокого пикового альвеолярного давления.

3. Механическая вентиляция

Контролируемаямеханическаявентиляциялегких (Controlled Mechanical Ventilation или Continuous mandatory ventilation - CMV). Под этим термином понимают постоянную принудительную вентиляцию, контролируемую по объему (поток/время), с дыхательным циклом, инициируемым по времени. Традиционно, используя аббревиатуру СМV, чаще подразумевают именно объемную вентиляцию, хотя постоянная принудительная вентиляция может проводиться и в варианте с контролем по давлению (СМV-PC).

Дыхание больного в этой ситуации полностью контролируется вентилятором, поэтому сам пациент не может инициировать работу респиратора. В зависимости от производителей и типа респиратора этот режим может называться по-разному - "вентиляция, контролируемая по объему", "постоянная принудительная вентиляция легких", "контролируемый режим" и др.

Контролируемая механическая вентиляция легких не гарантирует, что пациент не попытается самостоятельно дышать. Однако вентилятор не будет отвечать на попытки больного, так как чувствительность его отключена. В такой ситуации паттерн вентиляции становится ассинхронным: больной пытается сделать вдохов больше, чем вентилятор их обеспечивает. Невозможность получить вдох по требованию ведет к беспокойству больного, задержке углекислого газа, увеличению работы дыхания. Поэтому большинство современных респираторов при проведении принудительной объемной вентиляции все же предусматривает использование триггерного механизма.

Вспомогательная/контролируемая механическая вентиляция (AssistCMV). Этот режим характеризуется как постоянная принудительная вентиляция, контролируемая по объему, триггерируемая по давлению (по потоку) или по времени, с переключением фаз дыхательного цикла по времени (объему). Минимально необходимая частота и дыхательный объем в этом режиме задаются оператором. Инспираторная фаза инициируется больным, причем на каждую попытку подается заданный дыхательный объем. При отсутствии самостоятельных попыток больного аппарат подает заданное количество аппаратных вдохов ("триггерируемых по времени"). Единственная разница между CMV и AssistCMV в том, что оператор должен установить чувствительность триггера легких.

Различные виды искусственной вентиляции легких (ИВЛ) позволяют обеспечить газообмен пациенту как во время операции, так и при критических состояниях опасных для жизни. Искусственное дыхание спасло немало жизней, но что такое ИВЛ в медицине понимает не каждый, поскольку вентиляция легких с помощью специальных аппаратов, появилась только в прошлом веке. В настоящее время трудно представить реанимационное отделение или операционную без аппарата ИВЛ.

Для чего нужна искусственная вентиляция легких

Отсутствие или нарушение дыхания и последующая остановка кровобращения в течение более 3-5 минут неизбежно ведут к необратимому поражению головного мозга и смерти. В таких случаях только методы и техника проведения искусственной вентиляции легких могут помочь спасти человека. Нагнетание воздуха в дыхательную систему, массаж сердца помогают временно предотвратить гибель клеток мозга при клинической смерти, и в некоторых случаях дыхание и сердцебиение удается восстановить.

Правила и способы проведения искусственной вентиляции легких изучают на специальных курсах, основы ИВЛ рот в рот используются для оказания первой помощи больным. Говоря о технике искусственной вентиляции легких (ИВЛ) и непрямого массажа сердца, стоит помнить, что их соотношение равно 1:5 (один вдох и пять компрессий грудины) для взрослых и детей с массой тела более 20 кг., если реанимацию проводят два спасателя. Если реанимацию проводит один спасатель, соотношение равно 2:15 (два вдоха и пятнадцать компрессий грудины). Общее число компрессий грудины составляет 60-80 и даже может достигать 100 в минуту и зависит от возраста пациента.

Но в настоящее время ИВЛ используется не только в реанимационных мероприятиях. Она позволяет проводить сложные оперативные вмешательства, является методом поддержки дыхания при заболеваниях вызывающих его нарушение.

Многие задаются вопросом: сколько живут люди, подключенные к аппарату искусственной вентиляции легких? Поддерживать жизнь таким образом можно сколько угодно долго, а решение об отключении от ИВЛ принимается в зависимости от состояния больного.

Показания для проведения ИВЛ в анестезиологии

Проведение оперативных вмешательств, требующих общего обезболивания, проводится с использованием анестетиков, которые вводятся в организм как внутривенно, так и ингаляционным путем. Большинство анестетиков угнетают дыхательную функцию организма, поэтому для введения пациента в медикаментозный сон требуется искусственная вентиляция легких, ведь последствия угнетения дыхания как у взрослых, так и у детей могут привести к снижению вентиляции, гипоксии, нарушению работы сердца.

Кроме того, для проведения любых операций, где используется многокомпонентный наркоз с интубацией трахеи и ИВЛ, обязательными компонентами являются мышечные релаксанты. Они расслабляют мышцы больного, в том числе и мышцы грудной клетки. Это подразумевает аппаратное поддержание дыхания.

Показания и последствия ИВЛ в анестезиологии, следующие:

  • необходимость расслабления мышц во время оперативного вмешательства (миоплегия);
  • нарушение дыхания (апноэ), возникшее на фоне введения в наркоз или во время операции. Причиной может быть угнетение дыхательного центра анестетиками;
  • оперативные вмешательства на открытой грудной клетке;
  • дыхательная недостаточность во время анестезии;
  • искусственная вентиляция легких после операции, при медленном восстановлении спонтанного дыхания.

Ингаляционный наркоз, тотальная внутривенная анестезия с ИВЛ – основные методы обезболивания при операциях на грудной и брюшной полости, когда требуется использование миорелаксантов для обеспечения адекватного хирургического доступа.

Мышечные релаксанты позволяют уменьшить дозу наркотических препаратов, помогают легче достичь синхронизации пациента с наркозно–дыхательной аппаратурой и помогают сделать работу для хирургов более удобной.

Показания к ИВЛ в реанимационной практике

Процедуру рекомендуется проводить при любых нарушениях дыхания (асфиксии), как возникших внезапно, так и предсказуемых. При нарушении дыхания наблюдаются три этапа: обструкция (нарушенная проходимость) дыхательных путей, гиповентиляция (недостаточная вентиляция лёгких) и, как следствие, апноэ (остановка дыхания). Показанием к проведению ИВЛ являются любые причины обструкции и последующих этапов. Такая необходимость может появиться не только во время плановых операций, но и в экстренных ситуациях, которые по сути уже являются реанимацией. Причины могут быть следующие:

  • Повреждения головы, шеи, груди и живота;
  • Инсульт;
  • Судороги;
  • Поражение электротоком;
  • Передозировка лекарств;
  • Отравление окисью углерода, вдыхание газа и дыма;
  • Анатомические искажения носоглотки, глотки и шеи;
  • Инороднее тело в дыхательных путях;
  • Декомпенсация обструктивных легочных заболеваний (астма, эмфизема);
  • Утопление.

Режимы искусственной вентиляции легких (ИВЛ) в реанимации отличаются от ее проведения в качестве анестезиологического пособия. Дело в том, что многие заболевания могут вызывать не отсутствие дыхания, а дыхательную недостаточность, которая сопровождается нарушением оксигенации тканей, ацидозом, патологическими видами дыхания.

Для лечения и коррекции таких состояний требуются особые режимы ИВЛ в реанимации, например, при отсутствии заболеваний дыхательной системы используют режим вентиляции с контролем по давлению, при котором воздух под давлением поступает на вдохе, но выдох осуществляется пассивно. При бронхоспазме, давление на вдохе нужно увеличить, чтобы преодолеть сопротивление в дыхательных путях.

Во избежание ателектаза (отека легких во время искусственной вентиляции легких) целесообразно увеличить давление на выдохе, это поднимет остаточный объем и не допустит спадания альвеол и пропотевания в них жидкости из кровеносных сосудов. Также режим контролируемой вентиляции легких дает возможность изменять дыхательный объем и частоту дыхания, что позволяет обеспечить нормальную оксигенацию у пациентов.

При необходимости проведения вентиляции легких у людей с острой дыхательной недостаточностью целесообразно отдать предпочтение высокочастотной ИВЛ, так как традиционная вентиляция может оказаться малоэффективной. Особенность методов, которые относят к высокочастотной ИВЛ, состоит в использовании высокой частоты вентиляции (превышает 60 в минуту, что соответствует 1 Гц) и уменьшенного дыхательного объема.

Способы и алгоритм проведения ИВЛ у реанимационных больных могут быть различными, показания для ее проведения:

  • отсутствие самостоятельного дыхания;
  • патологическое дыхание, в том числе тахипноэ;
  • дыхательная недостаточность;
  • признаки гипоксии.

Искусственная вентиляция легких, алгоритм проведения которой зависит от показаний, может осуществляться как с помощью аппарата, на котором выставляются соответствующие параметры ИВЛ (у взрослых и детей они различны), так и мешком Амбу. Если во время анестезиологического пособия при кратковременных вмешательствах можно использовать масочный метод, то в реанимации, обычно делают интубацию трахеи.

Противопоказания к проведению ИВЛ чаще имеют этическую окраску, так, ее не проводят при отказе больного, пациентам, когда отсутствует смысл продлевать жизнь, например, при последних стадиях злокачественных опухолей.

Осложнения

Осложнения после искусственной вентиляции легких (ИВЛ) могут возникнуть вследствие несоответствия режимов, состава газовой смеси, неадекватной санации легочного ствола. Они могут проявиться в нарушении гемодинамики, работы сердца, воспалительных процессах в трахее и бронхах, ателектазах.

Несмотря на то что искусственная вентиляция легких способна отрицательно влиять на организм, так как не может полностью соответствовать нормальному спонтанному дыханию, ее использование в анестезиологии и реанимации дает возможность оказать помощь в критических состояниях и провести адекватное обезболивание при оперативных вмешательствах.

Чтобы получить представление о проведении искусственной вентиляции легких, смотрите видео.

Я создал этот проект, чтобы простым языком рассказать Вам о наркозе и анестезии. Если Вы получили ответ на вопрос и сайт был полезен Вам, я буду рад поддержке, она поможет дальше развивать проект и компенсировать затраты на его обслуживание.

Проводящие пути

Нос - первые изменения поступающего воздуха происходят в носу, где он очищается, согревается и увлажняется. Этому способствует волосяной фильтр, преддверие и раковины носа. Интенсивное кровоснабжение слизистой оболочки и пещеристых сплетений раковин обеспечивает быстрое согревание или охлаждение воздуха до температуры тела. Испаряющаяся со слизистой оболочки вода увлажняет воздух на 75-80%. Длительное вдыхание воздуха пониженной влажности приводит к высыханию слизистой оболочки, попаданию сухого воздуха в легкие, развитию ателектазов, пневмонии и повышению сопротивления в воздухоносных путях.


Глотка отделяет пищу от воздуха, регулирует давление в области среднего уха.


Гортань обеспечивает голосовую функцию, с помощью надгортанника предотвращая аспирацию, а смыкание голосовых связок является одним из основных компонентов кашля.

Трахея — основной воздуховод, в ней согревается и увлажняется воздух. Клетки слизистой оболочки захватывают инородные вещества, а реснички продвигают слизь вверх по трахее.

Бронхи (долевые и сегментарные) заканчиваются концевыми бронхиолами.


Гортань, трахея и бронхи также участвуют в очищении, согревании и увлажнении воздуха.


Строение стенки проводящих воздухоносных путей (ВП) отличается от структуры дыхательных путей газообменной зоны. Стенка проводящих воздухоносных путей состоит из слизистой оболочки, слоя гладких мышц, подслизистой соединительной и хрящевой оболочек. Эпителиальные клетки воздухоносных путей снабжены ресничками, которые, ритмично колеблясь, продвигают защитный слой слизи в направлении носоглотки. Слизистая оболочка ВП и легочная ткань содержат макрофаги, фагоцитирующие и переваривающие минеральные и бактериальные частицы. В норме слизь из дыхательных путей и альвеол постоянно удаляется. Слизистая оболочка ВП представлена реснитчатым псевдомногослойным эпителием, а также секреторными клетками, выделяющими слизь, иммуноглобулины, комплемент, лизоцим, ингибиторы, интерферон и другие вещества. В ресничках содержится много митохондрий, обеспечивающих энергией их высокую двигательную активность (около 1000 движений в 1 мин.), что позволяет транспортировать мокроту со скоростью до 1 см/мин в бронхах и до 3 см/мин в трахее. За сутки из трахеи и бронхов в норме эвакуируется около 100 мл мокроты, а при патологических состояниях до 100 мл/час.


Реснички функционируют в двойном слое слизи. В нижнем находятся биологически активные вещества, ферменты, иммуноглобулины, концентрация которых в 10 раз больше, чем в крови. Это обуславливает биологическую защитную функцию слизи. Верхний слой ее механически защищает реснички от повреждений. Утолщение или уменьшение верхнего слоя слизи при воспалении или токсическом воздействии неизбежно нарушает дренажную функцию реснитчатого эпителия, раздражает дыхательные пути и рефлекторно вызывает кашель. Чихание и кашель защищают легкие от проникновения минеральных и бактериальных частиц.


Альвеолы


В альвеолах происходит газообмен между кровью легочных капилляров и воздухом. Общее число альвеол равно примерно 300 млн., а суммарная площадь их поверхности - примерно 80 м 2 . Диаметр альвеол составляет 0,2-0,3 мм. Газообмен между альвеолярным воздухом и кровью осуществляется путем диффузии. Кровь легочных капилляров отделена от альвеолярного пространства лишь тонким слоем ткани - так называемой альвеолярно-капиллярной мембраной, образованной альвеолярным эпителием, узким интерстициальным пространством и эндотелием капилляра. Общая толщина этой мембраны не превышает 1 мкм. Вся альвеолярная поверхность легких покрыта тонкой пленкой, называемой сурфактантом.

Сурфактант уменьшает поверхностное натяжение на границе между жидкостью и воздухом в конце выдоха, когда объем легкого минимален, увеличивает эластичность легких и играет роль противоотечного фактора (не пропускает пары воды из альвеолярного воздуха), в результате чего альвеолы остаются сухими. Он снижает поверхностное натяжение при уменьшении объема альвеолы во время выдоха и предупреждает её спадение; уменьшает шунтирование, что улучшает оксигенацию артериальной крови при более низком давлении и минимальном содержании О 2 во вдыхаемой смеси.


Сурфактантный слой состоит из:

1) собственно сурфактанта (микропленки из фосфолипидных или полипротеидных молекулярных комплексов на границе с воздушной средой);

2) гипофазы (глубжележащего гидрофильного слоя из белков, электролитов, связанной воды, фосфолипидов и полисахаридов);

3) клеточного компонента, представленного альвеолоцитами и альвеолярными макрофагами.


Основными химическими составляющими сурфактанта является липиды, белки и углеводы. Фосфолипиды (лецитин, пальмитиновая кислота, гепарин) составляют 80-90% его массы. Сурфактант покрывает непрерывным слоем и бронхиолы, понижает сопротивление при дыхании, поддерживает наполнение

При низком давлении растяжения, уменьшает действие сил, вызывающих накопление жидкости в тканях. Кроме того, сурфактант очищает вдыхаемые газы, отфильтровывает и улавливает вдыхаемые частицы, регулирует обмен воды между кровью и воздушной средой альвеолы, ускоряет диффузию СО 2 , обладает выраженным антиокислительным действием. Сурфактант очень чувствителен к различным эндо- и экзогенным факторам: нарушениям кровообращения, вентиляции и метаболизма, изменению РО 2 во вдыхаемом воздухе, загрязнению его. При дефиците сурфактанта возникают ателектазы и РДС новорожденных. Примерно 90-95% альвеолярного сурфактанта повторно перерабатывается, очищается, накапливается и ресекретируется. Период полувыведения компонентов сурфактанта из просвета альвеол здоровых легких составляет около 20 ч.

Легочные объёмы

Вентиляция легких зависит от глубины дыхания и частоты дыхательных движений. Оба этих параметра могут варьировать в зависимости от потребностей организма. Есть ряд объемных показателей, характеризующих состояние легких. Нормальные средние значения для взрослого человека следующие:


1. Дыхательный объем (ДО- VT - Tidal Volume) - объем вдыхаемого и выдыхаемого воздуха при спокойном дыхании. Нормальные значения - 7-9мл/кг.


2. Резервный объем вдоха (РОвд - IRV - Inspiratory Reserve Volume) - объем, который может дополнительно поступить после спокойного вдоха, т.е. разница между нормальной и максимальной вентиляцией. Нормальное значение: 2-2,5 л (около 2/3 ЖЕЛ).

3. Резервный объем выдоха (РОвыд - ERV - Expiratory Reserve Volume) - объем, который можно дополнительно выдохнуть после спокойного выдоха, т.е. разница между нормальным и максимальным выдохом. Нормальное значение: 1,0-1,5 л (около 1/3 ЖЕЛ).


4.Остаточный объем (ОО - RV - Residal Volume) - объем, остающийся в легких после максимального выдоха. Около 1,5-2,0 л.


5. Жизненная емкость легких (ЖЕЛ - VT - Vital Capacity) — количество воздуха, которое может быть максимально выдохнуто после максимального вдоха. ЖЕЛ является показателем подвижности легких и грудной клетки. ЖЕЛ зависит от возраста, пола, размеров и положения тела, степени тренированности. Нормальные значения ЖЕЛ - 60-70 мл/кг - 3,5-5,5 л.


6. Резерв вдоха (РВ) -Ёмкость вдоха (Евд - IC - Inspiritory Capacity) - максимальное количество воздуха, которое может поступить в легкие после спокойного выдоха. Равен сумме ДО и РОвд.

7. Общая емкость легких (ОЕЛ - TLC - Total lung capacity) или максимальная емкость легких - количество воздуха, содержащееся в легких на высоте максимального вдоха. Состоит из ЖЕЛ и ОО и рассчитывается как сумма ЖЕЛ и ОО. Нормальное значение около 6,0 л.
Исследование структуры ОЕЛ является решающим в выяснении путей увеличения или снижения ЖЕЛ, что может иметь существенное практическое значение. Увеличение ЖЕЛ может быть расценено положительно только в том случаи, если ОЕЛ не меняется или увеличивается, но меньше, чем ЖЕЛ, что происходит при увеличении ЖЕЛ за счет уменьшения ОО. Если одновременно с увеличением ЖЕЛ происходит еще большее увеличение ОЕЛ, то это нельзя считать положительным фактором. При ЖЕЛ ниже 70% ОЕЛ функция внешнего дыхания глубоко нарушена. Обычно при патологических состояниях ОЕЛ и ЖЕЛ изменяются одинаково, за исключением обструктивной эмфиземы легких, когда ЖЕЛ, как правило, уменьшается, ОО увеличивается, а ОЕЛ может оставаться нормальной или быть выше нормы.


8. Функциональная остаточная емкость (ФОЕ - FRC - Functional residual volume) - количество воздуха, которое остается в легких после спокойного выдоха. Нормальные значения у взрослых - от 3 до 3,5 л. ФОЕ = ОО + РОвыд. По определению ФОЕ - объем газа, который остается в легких при спокойном выдохе и может быть мерой области газообмена. Она образуется в результате баланса между противоположно направленными эластическими силами легких и грудной клетки. Физиологическое значение ФОЕ состоит в частичном обновлении альвеолярного объема воздуха во время вдоха (вентилируемый объем) и указывает на объем альвеолярного воздуха, постоянно находящегося в легких. Со снижением ФОЕ связаны развитие ателектазов, закрытие мелких дыхательных путей, уменьшение податливости легких, увеличение альвеолярно-артериального различия по О 2 в результате перфузии в ателектазированных участках легких, снижение вентиляционно-перфузионного соотношения. Обструктивные вентиляционные нарушения ведут к повышению ФОЕ, рестриктивные нарушения - к снижению ФОЕ.


Анатомическое и функциональное мертвое пространство


Анатомическим мертвым пространством называют объем воздухоносных путей, в котором не происходит газообмен. Это пространство включает носовую и ротовую полости, глотку, гортань, трахею, бронхи и бронхиолы. Объем мертвого пространства зависит от роста и положения тела. Приближенно можно считать, что у сидящего человека объем мертвого пространства (в миллилитрах) равен удвоенной массе тела (в килограммах). Таким образом, у взрослых он равен около 150-200 мл (2 мл/кг массы тела).


Под функциональным (физиологическим) мертвым пространством понимают все те участки дыхательной системы, в которых не происходит газообмена по причине сниженного или отсутствующего кровотока. К функциональному мертвому пространству в отличие от анатомического относятся не только воздухоносные пути, но также и те альвеолы, которые вентилируются, но не перфузируются кровью.


Альвеолярная вентиляция и вентиляция мертвого пространства

Часть минутного объема дыхания, достигающая альвеол, называется альвеолярной вентиляцией, остальная его часть составляет вентиляцию мертвого пространства. Альвеолярная вентиляция служит показателем эффективности дыхания в целом. Именно от этой величины зависит газовый состав, поддерживаемый в альвеолярном пространстве. Что касается минутного объема, то он лишь в незначительной степени отражает эффективность вентиляции легких. Так, если минутный объем дыхания нормальный (7л/мин), но дыхание частое и поверхностное (ДО-0,2 л, ЧД-35/мин), то вентилироваться

Будет главным образом мертвое пространство, в которое воздух поступает раньше, чем в альвеолярное; в этом случае вдыхаемый воздух почти не будет достигать альвеол. Поскольку объем мертвого пространства постоянен, альвеолярная вентиляция тем больше, чем глубже дыхание и меньше частота.


Растяжимость (податливость) легочной ткани
Растяжимость легких является мерой эластической тяги, а также эластического сопротивления легочной ткани, которое преодолевается в процессе вдоха. Иначе говоря, растяжимость — это мера упругости легочной ткани, т. е. её податливость. Математически растяжимость выражается в виде частного от изменения объема легких и соответствующего изменения внутрилегочного давления.

Растяжимость может быть измерена отдельно для легких и для грудной клетки. С клинической точки зрения (особенно во время ИВЛ) наибольший интерес представляет именно податливость самой легочной ткани, отражающая степень рестриктивной легочной патологии. В современной литературе растяжимость легких принято обозначать термином «комплайнс» (от английского слова «compliance», сокращенно — С).


Податливость легких снижается:

С возрастом (у пациентов старше 50 лет);

В положении лежа (из-за давления органов брюшной полости на диафрагму);

Во время лапароскопических хирургических вмешательств в связи с карбоксиперитонеумом;

При острой рестриктивной патологии (острые полисегментарные пневмонии, РДС, отёк легких, ателектазирование, аспирация и т. д.);

При хронической рестриктивной патологии (хроническая пневмония, фиброз легких, коллагенозы, силикозы и т. д.);

При патологии органов, которые окружают легкие (пневмо- или гидроторакс, высокое стояние купола диафрагмы при парезе кишечника и т.д.).


Чем хуже податливость лёгких, тем большее эластическое сопротивление легочной ткани надо преодолеть, чтобы достигнуть того дыхательного объема, что и при нормальной податливости. Следовательно, в случае ухудшающейся растяжимости лёгких при достижении того же дыхательного объема давление в дыхательных путях существенно возрастает.

Данное положение очень важно для понимания: при объемной ИВЛ, когда принудительный дыхательный объём подается больному с плохой податливостью легких (без высокого сопротивления дыхательных путей), существенный рост пикового давления в дыхательных путях и внутрилегочного давления значительно увеличивает риск баротравмы.


Сопротивление дыхательных путей


Поток дыхательной смеси в легких должен преодолеть не только эластическое сопротивление самой ткани, но и резистивное сопротивление дыхательных путей Raw (аббревиатура от английского слова «resistance»). Поскольку трахеобронхиальное дерево представляет собой систему трубок различной длины и ширины, то сопротивление газотоку в легких можно определить по известным физическим законам. В целом, сопротивление потоку зависит от градиента давлений в начале и в конце трубки, а также от величины самого потока.


Поток газа в легких может быть ламинарным, турбулентным и переходным. Для ламинарного потока характерно послойное поступательное движение газа с

Различной скоростью: скорость потока наиболее высока в центре и постепенно снижается к стенкам. Ламинарный поток газа преобладает при относительно низких скоростях и описывается законом Пуазейля, в соответствии с которым сопротивление газотоку в наибольшей степени зависит от радиуса трубки (бронхов). Уменьшение радиуса в 2 раза приводит к возрастанию сопротивления в 16 раз. В связи с этим понятна важность выбора по возможности наиболее широкой эндотрахеальной (трахеостомической) трубки и поддержания проходимости трахеобронхиального дерева во время ИВЛ.
Сопротивление дыхательных путей газотоку значительно увеличивается при бронхиолоспазме, отеке слизистой оболочки бронхов, скоплении слизи и воспалительного секрета по причине сужения просвета бронхиального дерева. На сопротивление влияют также скорость потока и длина трубки (бронхов). С

Увеличением скорости потока (форсирование вдоха или выдоха) сопротивление дыхательных путей увеличивается.

Основные причины увеличения сопротивления дыхательных путей:

Бронхиолоспазм;

Отек слизистой оболочки бронхов, (обострение бронхиальной астмы, бронхит, подсвязочный ларингит);

Инородное тело, аспирация, новообразования;

Скопление мокроты и воспалительного секрета;

Эмфизема (динамическая компрессия воздухоносных путей).


Турбулентный поток характеризуется хаотичным движением молекул газа вдоль трубки (бронхов). Он преобладает при высоких объемных скоростях потока. В случае турбулентного потока сопротивление дыхательных путей возрастает, так как при этом оно в еще большей степени зависит от скорости потока и радиуса бронхов. Турбулентное движение возникает при высоких потоках, резких изменениях скорости потока, в местах изгибов и разветвлений бронхов, при резком изменении диаметра бронхов. Вот почему турбулентный поток характерен для больных ХОЗЛ, когда даже в стадии ремиссии имеет место повышенное сопротивление дыхательных путей. Это же касается больных бронхиальной астмой.


Сопротивление воздухоносных путей распределено в легких неравномерно. Наибольшее сопротивление создают бронхи среднего калибра (до 5-7-й генерации), так как сопротивление крупных бронхов невелико из-за их большого диаметра, а мелких бронхов — вследствие значительной суммарной площади поперечного сечения.


Сопротивление дыхательных путей зависит также от объема легких. При большом объёме паренхима оказывает большее «растягивающее» действие на дыхательные пути, и их сопротивление уменьшается. Применение ПДКВ (PEEP) способствует увеличению объема легких и, следовательно, снижению сопротивления дыхательных путей.

Сопротивление дыхательных путей в норме составляет:

У взрослых — 3-10 мм вод.ст./л/с;

У детей — 15-20 мм вод.ст./л/с;

У младенцев до 1 года — 20-30 мм вод.ст./л/с;

У новорожденных — 30-50 мм вод.ст./л/с.


На выдохе сопротивление дыхательных путей на 2-4 мм вод.ст./л/с больше, чем на вдохе. Это связано с пассивным характером выдоха, когда состояние стенки воздухоносных путей в большей мере влияет на газоток, чем при активном вдохе. Поэтому для полноценного выдоха требуется в 2-3 раза больше времени, чем для вдоха. В норме соотношение времени вдох/выдох (I:E) составляет для взрослых около 1: 1,5-2. Полноценность выдоха у больного во время ИВЛ можно оценить при помощи мониторинга экспираторной временной константы.


Работа дыхания


Работа дыхания совершается преимущественно инспираторными мышцами во время вдоха; выдох почти всегда пассивен. В то же время в случае, например, острого бронхоспазма или отека слизистой оболочки дыхательных путей выдох также становится активным, что значительно увеличивает общую работу внешней вентиляции.


Во время вдоха работа дыхания, в основном, тратится на преодоление эластического сопротивления легочной ткани и резистивного сопротивления дыхательных путей, при этом около 50 % затраченной энергии накапливается в упругих структурах легких. Во время выдоха эта накопленная потенциальная энергия высвобождается, что позволяет преодолевать экспираторное сопротивление дыхательных путей.

Увеличение сопротивления вдоху или выдоху компенсируется дополнительной работой дыхательных мышц. Работа дыхания возрастает при снижении растяжимости легких (рестриктивная патология), росте сопротивления дыхательных путей (обструктивная патология), тахипноэ (за счет вентиляции мертвого пространства).


На работу дыхательной мускулатуры в норме тратится только 2-3% от всего потребляемого организмом кислорода. Это, так называемая, «стоимость дыхания». При физической работе стоимость дыхания может достигать 10-15%. А при патологии (особенно рестриктивной) на работу дыхательных мышц может расходоваться более 30-40% от всего поглощаемого организмом кислорода. При тяжёлой диффузионной дыхательной недостаточности стоимость дыхания возрастает до 90%. С какого-то момента весь дополнительный кислород, получаемый за счет увеличения вентиляции, идет на покрытие соответствующего прироста работы дыхательных мышц. Вот почему на определенном этапе существенное увеличение работы дыхания является прямым показанием к началу ИВЛ, при которой стоимость дыхания уменьшается практически до 0.


Работа дыхания, которая требуется для преодоления эластического сопротивления (податливости легких), возрастает по мере увеличения дыхательного объема. Работа, необходимая для преодоления резистивного сопротивления дыхательных путей, возрастает при увеличении частоты дыхания. Пациент стремится уменьшить работу дыхания, меняя частоту дыхания и дыхательный объем в зависимости от преобладающей патологии. Для каждой ситуации существуют оптимальные частота дыхания и дыхательный объем, при которых работа дыхания минимальна. Так, для больных со сниженной растяжимостью, с точки зрения минимизации работы дыхания, подходит более частое и поверхностное дыхание (малоподатливые легкие трудно поддаются расправлению). С другой стороны, при увеличенном сопротивлении дыхательных путей оптимально глубокое и медленное дыхание. Это понятно: увеличение дыхательного объема позволяет «растянуть», расширить бронхи, уменьшить их сопротивление газотоку; с этой же целью больные с обструктивной патологией во время выдоха сжимают губы, создавая собственное «ПДКВ» (PEEP). Медленное и редкое дыхание способствует удлинению выдоха, что важно для более полного удаления выдыхаемой газовой смеси в условиях повышенного экспираторного сопротивления дыхательных путей.


Регуляция дыхания

Процесс дыхания регулируется центральной и периферической нервной системой. В ретикулярной формации головного мозга находится дыхательный центр, состоящий из центров вдоха, выдоха и пневмотаксиса.


Центральные хеморецепторы расположены в продолговатом мозге и возбуждаются при повышении концентрации Н+ и РСО 2 в спинномозговой жидкости. В норме рН последней составляет 7,32, РСО 2 - 50 мм.рт.ст., а содержание НСО 3 - 24,5 ммоль/л. Даже небольшое снижение рН и рост РСО 2 увеличивают вентиляцию легких. Эти рецепторы реагируют на гиперкапнию и ацидоз медленнее, чем периферические, так как требуется дополнительное время на измерение величины СО 2 , Н + и НСО 3 из-за преодоления гематоэнцефалического барьера. Сокращения дыхательных мышц контролирует центральный дыхательный механизм, состоящий из группы клеток продолговатого мозга, моста, а также пневмотаксических центров. Они тонизируют дыхательный центр и по импульсации из механорецепторов определяют порог возбуждения, при котором прекращается вдох. Пневмотаксические клетки также переключают вдох на выдох.


Периферические хеморецепторы, расположенные на внутренних оболочках сонного синуса, дуги аорты, левого предсердия, контролируют гуморальные параметры (РО 2 , РСО 2 в артериальной крови и спинномозговой жидкости) и немедленно реагируют на изменения внутренней среды организма, меняя режим самостоятельного дыхания и, таким образом, корригируя рН, РО 2 и РСО 2 в артериальной крови и спинномозговой жидкости. Импульсы из хеморецепторов регулируют объем вентиляции, необходимый для поддержания определенного уровня метаболизма. В оптимизации режима вентиляции, т.е. установлении частоты и глубины дыхания, длительности вдоха и выдоха, силы сокращения дыхательных мышц при данном уровне вентиляции, участвуют и механорецепторы. Вентиляция легких определяется уровнем метаболизма, воздействием продуктов обмена веществ и О2 на хеморецепторы, которые трансформируют их в афферентную импульсацию нервных структур центрального дыхательного механизма. Основная функция артериальных хеморецепторов - немедленная коррекция дыхания в ответ на изменения газового состава крови.


Периферические механорецепторы, локализующиеся в стенках альвеол, межреберных мышцах и диафрагме, реагируют на растяжение структур, в которых они находятся, на информацию о механических явлениях. Главную роль играют механорецепторы легких. Вдыхаемый воздух поступает по ВП к альвеолам и участвует в газообмене на уровне альвеолярно-капиллярной мембраны. По мере растяжения стенок альвеол во время вдоха механорецепторы возбуждаются и посылают афферентный сигнал в дыхательный центр, который тормозит вдох (рефлекс Геринга-Брейера).


При обычном дыхании межреберно-диафрагмальные механорецепторы не возбуждаются и имеют вспомогательное значение.

Система регуляции завершается нейронами, интегрирующими импульсы, которые поступают к ним от хеморецепторов, и посылающими импульсы возбуждения к дыхательным мотонейронам. Клетки бульбарного дыхательного центра посылают как возбуждающие, так и тормозящие импульсы к дыхательным мышцам. Координированное возбуждение респираторных мотонейронов приводит к синхронному сокращению дыхательных мышц.

Дыхательные движения, создающие воздушный поток, происходят благодаря согласованной работе всех дыхательных мышц. Нервные клетки двигательных

Нейронов дыхательных мышц расположены в передних рогах серого вещества спинного мозга (шейные и грудные сегменты).


У человека в регуляции дыхания принимает участие и кора большого мозга в пределах, допускаемых хеморецепторной регуляцией дыхания. Так, например, волевая задержка дыхания ограничена временем, в течение которого РаО 2 в спинномозговой жидкости повышается до уровней, возбуждающих артериальные и медуллярные рецепторы.


Биомеханика дыхания


Вентиляция легких происходит за счет периодических изменений работыдыхательных мышц, объема грудной полости и легких. Основными мышцами вдоха являются диафрагма и наружные межреберные мышцы. Во время их сокращения происходят уплощение купола диафрагмы и приподнятие ребер кверху, в результате объем грудной клетки увеличивается, растет отрицательное внутриплевральное давление (Ppl). Перед началом вдоха (в конце выдоха) Ppl приблизительно составляет минус 3-5 см вод.ст. Альвеолярное давление (Palv) принимается за 0 (т. е. равно атмосферному), оно же отражает давление в дыхательных путях и коррелирует с внутригрудным давлением.


Градиент между альвеолярным и внутриплевральным давлением называется транспульмонарным давлением (Ptp). В конце выдоха оно составляет 3-5 см вод.ст. Во время спонтанного вдоха рост отрицательного Ppl (до минус 6-10 см вод.ст.) вызывает снижение давления в альвеолах и дыхательных путях ниже атмосферного. В альвеолах давление снижается до минус 3-5 см вод.ст. За счёт разницы давлений воздух поступает (засасывается) из внешней среды в легкие. Грудная клетка и диафрагма действуют как поршневой насос, втягивающий воздух в легкие. Такое «присасывающее» действие грудной клетки важно не только для вентиляции, но и для кровообращения. Во время спонтанного вдоха происходят дополнительное «присасывание» крови к сердцу (поддержание преднагрузки) и активизация легочного кровотока из правого желудочка по системе легочной артерии. В конце вдоха, когда движение газа прекращается, альвеолярное давление возвращается к нулю, но внутриплевральное давление остается сниженным до минус 6-10 см вод.ст.

Выдох в норме является процессом пассивным. После расслабления дыхательных мышц силы эластической тяги грудной клетки и легких вызывают удаление (выдавливание) газа из легких и восстановление первоначального объема легких. В случае нарушения проходимости трахеобронхиального дерева (воспалительный секрет, отек слизистой оболочки, бронхоспазм) процесс выдоха затруднен, и в акте дыхания начинают принимать участие также мышцы выдоха (внутренние межреберные мышцы, грудные мышцы, мышцы брюшного пресса и т. д.). При истощении экспираторных мышц процесс выдоха еще более затрудняется, происходит задержка выдыхаемой смеси и динамическое перераздувание легких.


Недыхательные функции легких

Функции легких не ограничиваются диффузией газов. В них содержится 50% всех эндотелиальных клеток организма, которые выстилают капиллярную поверхность мембраны и участвуют в метаболизме и инактивации биологически активных веществ, проходящих через легкие.


1. Легкие контролируют общую гемодинамику путем различного заполнения собственного сосудистого русла и влияния на биологически активные вещества, регулирующие сосудистый тонус (серотонин, гистамин, брадикинин, катехоламины), превращением ангиотензина I в ангиотензин II, участием в метаболизме простагландинов.


2. Легкие регулируют свертывание крови, секретируя простациклин - ингибитор агрегации тромбоцитов, и удаляя из кровотока тромбопластин, фибрин и продукты его деградации. В результате этого оттекающая от легких кровь имеет более высокую фибринолитическую активность.


3. Легкие участвуют в белковом, углеводном и жировом обмене, синтезируя фосфолипиды (фосфатидилхолин и фосфатидилглицерол - основные компоненты сурфактанта).

4. Легкие продуцируют и элиминируют тепло, поддерживая энергетический баланс организма.


5. Легкие очищают кровь от механических примесей. Агрегаты клеток, микротромбы, бактерии, пузырьки воздуха, капли жира задерживаются легкими и подвергаются деструкции и метаболизму.


Типы вентиляции и виды нарушений вентиляции


Разработана физиологически четкая классификация типов вентиляции, в основу которой положены парциальные давления газов в альвеолах. В соответствии с этой классификацией выделяются следующие типы вентиляции:


1.Нормовентиляция - нормальная вентиляция, при которой парциальное давление СО2 в альвеолах поддерживается на уровне около 40 мм.рт.ст.


2.Гипервентиляция - усиленная вентиляция, превышающаяметаболические потребности организма (РаСО2<40 мм.рт.ст.).


3.Гиповентиляция - сниженная вентиляция по сравнению с метаболическими потребностями организма (РаСО2>40 мм.рт.ст.).


4. Повышенная вентиляция - любое увеличение альвеолярной вентиляции по сравнению с уровнем покоя, независимо от парциального давления газов в альвеолах (например, при мышечной работе).

5.Эупноэ - нормальная вентиляция в покое, сопровождающаяся субъективным чувством комфорта.


6.Гиперпноэ - увеличение глубины дыхания независимо от того, повышена ли при этом частота дыхательных движений или нет.


7.Тахипноэ - увеличение частоты дыхания.


8.Брадипноэ - снижение частоты дыхания.


9.Апноэ - остановка дыхания, обусловленная, главным образом, отсутствием физиологической стимуляции дыхательного центра (уменьшение напряжения СО2, в артериальной крови).


10.Диспноэ (одышка) - неприятное субъективное ощущение недостаточности дыхания или затрудненного дыхания.


11.Ортопноэ - выраженная одышка, связанная с застоем крови в легочных капиллярах в результате недостаточности левого сердца. В горизонтальном положении это состояние усугубляется, и поэтому лежать таким больным тяжело.


12.Асфиксия - остановка или угнетение дыхания, связанные, главным образом, с параличом дыхательных центров или закрытием дыхательных путей. Газообмен при этом резко нарушен (наблюдается гипоксия и гиперкапния).

В целях диагностики целесообразно различать два типа нарушений вентиляции - рестриктивный и обструктивный.


К рестриктивному типу нарушений вентиляции относятся все патологические состояния, при которых снижаются дыхательная экскурсия и способность легких расправляться, т.е. уменьшается их растяжимость. Такие нарушения наблюдаются, например, при поражениях легочной паренхимы (пневмонии, отёк лёгких, фиброз лёгких) или при плевральных спайках.


Обструктивный тип нарушений вентиляции обусловлен сужением воздухоносных путей, т.е. повышением их аэродинамического сопротивления. Подобные состояния встречаются, например, при накоплении в дыхательных путях слизи, набухании их слизистой оболочки или спазме бронхиальных мышц (аллергический бронхиолоспазм, бронхиальная астма, астмоидный бронхит и т.д.). У таких больных сопротивление вдоху и выдоху повышено, и поэтому со временем воздушность легких и ФОЕ у них увеличиваются. Патологическое состояние, характеризующееся чрезмерным уменьшением числа эластических волокон(исчезновением альвеолярных перегородок, объединением капиллярной сети), называется эмфиземой легких.